碳載體具有比表面積高、孔結(jié)構(gòu)豐富、穩(wěn)定性強(qiáng)、導(dǎo)電性好等優(yōu)勢(shì),被廣泛用于電催化領(lǐng)域。然而,碳載體的惰性表面導(dǎo)致其與負(fù)載的金屬納米粒子間的相互作用力弱,難以有效調(diào)控金屬納米粒子的電子結(jié)構(gòu)和催化活性,抑制團(tuán)聚的能力也較差。
針對(duì)上述問(wèn)題,研究人員提出利用單原子摻雜調(diào)節(jié)碳載體π共軛結(jié)構(gòu)以增強(qiáng)其與金屬納米粒子間相互作用的策略。研究人員利用鐵鈷鎳等金屬單原子摻雜含氧石墨烯,并以其作為載體負(fù)載金屬Ru納米粒子,構(gòu)筑了包含金屬單原子、碳基底和Ru納米粒子的復(fù)合納米反應(yīng)器。理論計(jì)算表明,金屬單原子的修飾可實(shí)現(xiàn)含氧石墨烯表面電荷的重新分布,使單原子周邊碳原子呈缺電子狀態(tài),顯著增強(qiáng)了負(fù)載Ru納米顆粒至碳載體的電子轉(zhuǎn)移能力。以電催化析氫反應(yīng)(HER)為模型,研究人員探究了該復(fù)合納米反應(yīng)器中金屬單原子摻雜誘導(dǎo)的Ru納米顆粒界面電荷重新排布對(duì)產(chǎn)氫效能的影響。通常,Ru對(duì)氫的吸附過(guò)強(qiáng),導(dǎo)致其電催化分解水產(chǎn)氫的活性較低。然而,復(fù)合納米反應(yīng)器中遠(yuǎn)離界面的Ru位點(diǎn)有利于水分子的裂解,為析氫反應(yīng)提供有效的氫源,同時(shí)界面處的Ru位點(diǎn)具有適中的氫吸附能力和高析氫活性。該復(fù)合納米反應(yīng)器催化HER反應(yīng)是目前文獻(xiàn)報(bào)道的最高活性之一。該研究不僅開發(fā)出高性能析氫電催化劑,還揭示了金屬單原子、碳載體與負(fù)載金屬納米顆粒之間的作用機(jī)制,實(shí)現(xiàn)了不同位點(diǎn)間的遠(yuǎn)程協(xié)同和催化性能優(yōu)化,為基于多重活性位點(diǎn)的納米反應(yīng)器設(shè)計(jì)和構(gòu)筑提供了新思路。
劉健團(tuán)隊(duì)長(zhǎng)期致力于碳載金屬催化劑的研發(fā),實(shí)現(xiàn)高活性高穩(wěn)定性碳載金屬催化劑的精準(zhǔn)合成。該團(tuán)隊(duì)構(gòu)建了蛋黃-蛋殼型Pd&ZnO@carbon、Co-CoOx@N-C、碳載金屬亞微米反應(yīng)器(Adv. Funct. Mater. 2018;Adv. Sci. 2019),并將金屬納米顆粒選擇定位在中空碳球內(nèi)部和表面,系統(tǒng)研究了納米反應(yīng)器在液相加氫反應(yīng)中的空間限域效應(yīng)(Angew. Chem. Int. Ed. 2020)。此外,構(gòu)建了Fe-Cu單原子的碳基亞納米反應(yīng)器,在低電位下實(shí)現(xiàn)了高的NH3產(chǎn)率(Adv. Mater. 2020)。
相關(guān)研究成果以Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on Carbon Substrate為題,發(fā)表在《德國(guó)應(yīng)用化學(xué)》(Angew. Chem. Int. Ed.)上。大連化物所納米反應(yīng)器與反應(yīng)工程學(xué)創(chuàng)新特區(qū)研究組副研究員蘇盼盼為論文第一作者。研究工作得到國(guó)家自然科學(xué)基金、中科院潔凈能源創(chuàng)新研究院合作基金等的資助。
構(gòu)筑的復(fù)合納米反應(yīng)器表現(xiàn)出優(yōu)異的電化學(xué)析氫性能
原標(biāo)題:大連化物所研發(fā)出新型催化體系實(shí)現(xiàn)高效電催化析氫